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Synchronization and chaotic masking scheme based on occasional coupling
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Department of Electrical and Electronics Engineering, Bilkent University, 06533 Bilkent, Ankara, Turkey

~Received 18 April 2000!

We present a synchronization and a related chaotic masking scheme for discrete-time systems. This method
is based on occasional coupling of transmitter and receiver systems. We show that the synchronization may be
achieved and the message can be recovered with acceptable error under certain conditions. Then we show that
the proposed schemes are robust with respect to noise and parameter mismatch. We also present some simu-
lation results.

PACS number~s!: 05.45.2a, 43.72.1q
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I. INTRODUCTION

In the last decade the synchronization of chaotic syste
has received a great deal of attention, see@1–18#. One pos-
sible application of synchronization is the possibility of u
ing chaotic signals for secure communication~see@4,5,7#!.
There are various synchronization schemes@9–11,15–18#,
and in most of these the synchronized system consists of
parts: a generator of chaotic signals, which is called the m
ter ~or drive! system, and a receiver, which is called the sla
~or response! system. A chaotic signal generated by the m
ter system may be used as an input to the slave syste
synchronize the common signals of both systems. After s
chronization, one may add the message to the chaotic si
used for synchronization and send this signal as an inpu
the slave system. This is called chaotic masking, and un
certain conditions, one may recover the original mess
@2,3#. An extensive list of references for various aspects
chaotic systems may be found in Ref.@1#.

In this paper, we will consider the discrete-time chao
systems. Synchronization of such systems, particul
coupled maps, has been investigated by many researche
Refs. @6,8#, synchronization properties of coupled maps,
cluding the coupled tent maps, were investigated. In R
@12#, coupled logistic maps were considered. An observ
based synchronization scheme for discrete-time systems
given in @23# ~see@9,10# for continuous-time case!. In Refs.
@6,21# various synchronization schemes and their robustn
properties were given. In Ref.@22# some secure communica
tion schemes based on synchronization were proposed.

Recently, a new synchronization scheme based on o
sional coupling and its application to communication f
continuous-time systems has been given in Refs.@13,14#. In
this paper, we will apply the same idea to discrete-time s
tems and show that similar results hold under certain co
tions. We will assume that a synchronization scheme
which the synchronization is achieved exponentially fas
available. The occasional synchronization scheme propo
in this paper consists of the application of synchronizat
and autonomous phases periodically. In the the synchron
tion phases, the exponential synchronization scheme m
tioned above is used and in the autonomous phases, th
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sponse system is switched to a replica of the drive system
the case of message transmission, the message is mask
the drive signal and sent to the receiver only in the auto
mous phases. We will show that under certain conditions
is possible to achieve synchronization, and in the case
message transmission, it is possible to recover the mes
with acceptable error. In particular, we will show that wi
this technique, any message of any length can be transm
in the ideal case. Moreover, we will show that this techniq
is robust with respect to noise and parameter misma
When such nonidealities are present, we will show that th
is a maximum allowable message length for successful m
sage recovery, and if the length of the message exceeds
length, we can divide the message into submessages—
of which having a length smaller than the maximum allo
able length—and send each submessage in one mes
transmission interval.

This paper is organized as follows. In the next section,
will introduce our synchronization scheme and the rela
message transmission scheme, and prove their basic pro
ties in the ideal case. In Sec. III, we will give some robu
ness results with respect to noise and parameter mismatc
Sec. IV, we will present some simulation results, and fina
we will give some concluding remarks.

II. OCCASIONAL COUPLING

We consider discrete-time systems in this work. Let t
chaotic master system be given as follows:

u~k11!5 f „u~k!,m…, y~k!5h„u~k!…, k50,1,2, . . . ,
~2.1!

whereuPRn is the state,mPRp is parameter vector,f :Rn

3Rp→Rn and h:Rn→Rd are functions, andyPRd is the
measurable output of this system that will be used for s
chronization. Let the slave system used for synchroniza
be given as

w~k11!5g„w~k!,y~k!,m…, k50,1,2, . . . , ~2.2!

where g:Rn3Rd3Rp→Rn is an appropriate function. Le
e5u2w denote the synchronization error. We assume t
the error decays exponentially to zero, that is for someM
.0, 0,r,1, the following holds for anyk.k0 ande(k0):
3543 ©2000 The American Physical Society
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3544 PRE 62ÖMER MORGÜL
ie~k!i<Mr (k2k0)ie~k0!i , ~2.3!

wherei•i is any norm inRn. In case Eq.~2.1! is valid for
k0<k,K21, then we require that Eq.~2.3! be valid for
k0,k<K. In this case we say that the synchronization
exponential. Note that we may takeM>1 in Eq.~2.3!, with-
out loss of generality. In some cases Eq.~2.3! might hold for
sufficiently smalle(k0), i.e., for ie(k0)i,r for somer .0,
in which case we say that the synchronization is locally
ponential.

We note that some synchronization schemes propose
the literature are exponential. For example, in Ref.@9#, an
exponential synchronization scheme for logistic maps is p
posed, and it was shown that this scheme is robust w
respect to noise and parameter mismatch. In@5#, a different
synchronization scheme~type 2 in the notation of Ref.@5#!
was applied to a skew-tent map, and similar results w
obtained. In Refs.@10,11#, an observer-based synchroniz
tion scheme for continuous-time systems was proposed
it was shown that the proposed scheme yields expone
synchronization that is robust with respect to noise and
rameter mismatch. The same methodology could be
tended to discrete-time systems, see e.g.,@23#. However, we
will not pursue this direction.

In Refs.@12,13#, a communication scheme for continuou
time systems based on occasional coupling of synchron
systems was proposed. We will apply this methodology
discrete-time systems. Let us rewrite Eq.~2.2! in the follow-
ing form:

w~k11!5 f „w~k!,m…1s~k!G„w~k!,y~k!,m…, ~2.4!

where G(w,y,m)5g(w,y,m)2 f (w,m), and s(k)50,1 is
the switching signal. Whens(k)51, Eq.~2.4! reduces to Eq.
~2.2!, and whens(k)50, Eq. ~2.4! becomes a copy of Eq
~2.1!. As in @12,13#, our chaotic masking scheme is based
changing the switching signals between 0 and 1, periodi
cally. The periods in whichs51 ands50 are used for syn-
chronization and message transmission, respectively. M
precisely, letTs andTm be the integers that denote the sy
chronization and message transmission intervals, res
tively. Then, for j 51,2, . . . oursynchronization scheme i
as follows:

i. ( j th synchronization phase! For (j 21)(Ts1Tm)<k
, jTs1( j 21)Tm , @i.e., when k „mod(Ts1Tm)…P@0,Ts)#,
use the master system given by Eq.~2.1! and the slave sys
tem given by Eq.~2.4! with s(k)51. The signal trasmitted to
the slave system isy in this period.

ii. ( j th autonomous phase! For jTs1( j 21)Tm<k, j (Ts
1Tm), @i.e., whenk „mod(Ts1Tm)…P@Ts ,Ts1Tm)#, use the
master system given by Eq.~2.1! and the slave system give
by Eq. ~2.4! with s(k)50. ~Note that in this phase Eq.~2.4!
becomes a replica of Eq.~2.1!, which is an autonomous sys
tem!.

Note that in the synchronization phase, the error dec
exponentially to zero, as given by Eq.~2.3!, and in the au-
tonomous phase it may increase, also exponentially f
However, by arrangingTs andTm , it may still be possible to
obtain an error that decreases exponentially fastat the begin-
s
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ning of synchronization periods, and the error in the messag
recovery will be small@see Eq.~2.19!#. This is the basic
rationale in our scheme.

Theorem 1: Consider the system given by Eqs.~2.1! and
~2.4!, and the synchronization scheme given above. Assu
that the function f (•,m) is Lipschitz, i.e., the following
holds:

i f ~u,m!2 f ~w,m!i<k1iu2wi , ~2.5!

for somek1.0. Assume that Eq.~2.3! holds in the synchro-
nization phases. IfTs.0 andTm.0 are chosen as

Ts.2
ln M

ln r
, Tm,2

Ts ln r1 ln M

ln k1
, ~2.6!

then the errorie(k)i decays to zero. Moreover, this decay
exponential, i.e., the following holds for someM̂.0, 0,g
,1:

ie~k!i<M̂gkie~0!i . ~2.7!

Proof: Let us define the following:

Tj
s5~ j 21!~Ts1Tm!, Tj

m5Tj
s1Ts , j 51,2, . . . ,

~2.8!

i.e., Tj
s andTj

m denote the beginning of thej th synchroniza-
tion and autonomous phases, respectively. Since Eq.~2.3!
holds in the j th synchronization phase, we have th
following:

ie~k!i<Mr (k2Tj
s)ie~Tj

s!i , Tj
s,k<Tj

m . ~2.9!

At the j th autonomous phase we have

ie~k11!i5i f ~u~k!,m!2 f ~w~k!,m!i<k1ie~k!i ,

Tj
m<k,Tj 11

s , ~2.10!

hence we have

ie~k!i<k
1
(k2Tj

m)ie~Tj
m!i , Tj

m,k<Tj 11
s . ~2.11!

Note that if k1,1, then the exponential decay is obviou
from Eqs.~2.9! and ~2.11!. Hence we assumek1.1 in the
sequel. From Eq.~2.9! we obtain

ie~Tj
m!i<MrTsie~Tj

s!i . ~2.12!

Hence we can rewrite Eq.~2.11! as

ie~k!i<MrTsk
1
(k2Tj

m)ie~Tj
s!i , Tj

m,k<Tj 11
s .

~2.13!

Note thatT1
s50, hence from Eq.~2.13! we obtain

ie~Tj 11
s !i<aie~Tj

s!i<a j ie~0!i , ~2.14!

wherea.0 is defined as

a5MrTsk1
Tm. ~2.15!
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By using Eq.~2.6! we obtain

ln a5 ln M1Ts ln r1Tm ln k1,0, ~2.16!

hencea,1. Note that sinceM>1 andr,1, we haveTs
.0 in Eq. ~2.6!, and the first inequality in Eq.~2.6! is re-
quired to guaranteeTm.0. By using Eq.~2.14! in Eqs.~2.9!
and ~2.13! we obtain

ie~k!i<
M

a
a j ie~0!i , Tj

s,k<Tj
m , ~2.17!

ie~k!i<a j ie~0!i , Tj
m,k<Tj 11

s . ~2.18!

By using Eq.~2.8! we obtain j >(k1Tm)/(Ts1Tm) in Eq.
~2.17! and j >k/(Ts1Tm) in Eq. ~2.18!. By using these in-
equalities, respectively, in Eqs.~2.17! and ~2.18!, and by
using the fact thata,1, we obtain Eq.~2.7! with g

5a1/(Ts1Tm),1, andM̂5max$MgTm/a,1%.
Based on the synchronization scheme given above,

propose the following message transmission scheme. Ag
let j 51,2, . . . , and letm be the message to be transmitte
Then, our message transmission scheme is as follows:

~i! ( j th synchronization phase! same as thej th synchro-
nization phase in the synchronization scheme.

~ii ! ( j th message transmission phase! same as thej th au-
tonomous phase in the synchronization scheme. The si
sent to the receiver is the masked messagey1m in this
phase.

~iii ! ~message recovery! In j th message transmissio
phase, the recovered messagem̂ is given as

m̂~k!5y~k!1m~k!2h„w~k!…. ~2.19!

We have the following result for our scheme.
Theorem 2: Consider the systems given by Eqs.~2.1! and

~2.4!, and the message transmission scheme given ab
Assume that Eq.~2.3! holds in the synchronization phase
and Eq.~2.5! holds. Moreover, leth be Lipschitz, i.e., the
following holds for somek2.0:

ih~u!2h~w!i<k2iu2wi . ~2.20!

Let ie(0)i<r for somer .0 and lete.0 be given. Then for
any messagem of lengthTm , there exists a synchronizatio
interval Ts such that the following holds in the messa
transmission period:

im̂~k!2m~k!i<e. ~2.21!

Proof. It can easily be shown that the estimates~2.9!–
~2.23! are valid. By using Eqs.~2.19!, ~2.20!, and~2.18! we
obtain the following in thej th message transmission phas

im̂~k!2m~k!i<k2a j ie~0!i , ~2.22!

wherea is given by Eq.~2.15!. From Eq.~2.22! we see that
Eq. ~2.21! holds if the following is satisfied:

ln M1Ts ln r1Tm ln k1<
1

j
ln

e

rk2
, j 51,2, . . . .

~2.23!
e
in,
.

al

ve.

:

If ln e/rk2,0, then Eq.~2.23! is satisfied provided that the
following holds:

ln M1Tsln r1Tm ln k1< ln
e

rk2
. ~2.24!

If ln e/rk2>0, then Eq.~2.23! is satisfied provided that the
following holds:

ln M1Ts ln r1Tm ln k1<0. ~2.25!

Note that 0,r,1, hence lnr,0. ThereforeTs ln r→2` as
Ts→`. Hence, for anyTm.0, one can find aTs.0 such
that Eq.~2.24! or ~2.25! holds.

III. ROBUSTNESS RESULTS

In the previous section, we considered the ideal case
this section, we will show that the proposed scheme is rob
with respect to noise and parameter mismatch. Note that
development of synchronization and message transmis
schemes are similar, hence we will consider only the robu
ness of the message transmission scheme in this section
bustness of the synchronization scheme can easily be sh
by performing similar calculations. We note that similar r
sults were given in Refs.@10–13# for the observer-based syn
chronization schemes for continuous-time systems, an
was noted that these robustness results are consequenc
exponential synchronization. We expect that similar resu
should hold for the discrete-time systems, and in this sec
we will prove such a robustness result by using exponen
synchronization.

We will assume that the slave system~2.2! has the fol-
lowing form:

w~k11!5g„y~k!1n~k!,w~k!,m8…, ~3.1!

wheren is a ~random! noise term added to the observationy
andm8 is the parameter vector used in the slave system
the following we will show that the proposed scheme is
bust under some mild conditions provided thatM<1 in Eq.
~2.3!, hence robustness is a consequence of exponential
chronization. This result can be extended to theM.1 case,
but the proof involves some advanced Lyapunov stabi
results and will not be pursued here.

Theorem 2: Let the system given by Eqs.~2.1! and ~2.2!
satisfy Eq.~2.3! with M<1. Assume thatg(y,w,m) is Lip-
schitz in y and m, i.e., the following hold for somek3.0,
k4.0:

ig~y1 ,w,m!2g~y2 ,w,m!i<k3iy12y2i , ~3.2!

ig~y,w,m1!2g~y,w,m2!i<k4im12m2i . ~3.3!

Now consider the system given by Eqs.~2.1! and ~3.1! and
assume thatini<nm for somenm.0 and defineDm5m8
2m. Assume that the solutions of Eqs.~2.1! and~3.1! remain
bounded. Then there exist constantsc1.0, c2.0, and c3
such that the following estimate holds:

ie~k!i<c1nm1c2iDmi1c3rk. ~3.4!

Proof: Note that Eq.~3.1! can be rewritten as
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w~k11!5g„y~k!,w~k!,m…1@g„y~k!1n~k!,w~k!,m8…

2g„y~k!,w~k!,m8…#1@g„y~k!,w~k!,m8…

2g„y~k!,w~k!,m…#. ~3.5!

Hence the errore now satisfies

e~k11!5 f „u~k!,m…2g„y~k!,w~k!,m…

2@g„y~k!1n~k!,w~k!,m8…2g„y~k!,w~k!,m8…#

2@g„y~k!,w~k!,m8…2g„y~k!,w~k!,m…#. ~3.6!

By using Eqs.~2.1!–~2.3! and Eqs.~3.2! and ~3.3! in Eq.
~3.6!, we obtain

ie~k11!i<rie~k!i1k1nm1k2iDmi . ~3.7!

By using Eq.~3.7! repeatedly, we obtain

ie~k!i<
k3

12r
nm1

k4

12r
iDmi

1S ie~0!i2
k1nm1k2iDmi

~12r!r2 D rk, ~3.8!

which has the same form as Eq.~3.4!.
Note that whens(k)51, i.e., in the synchronization inter

val, our scheme uses Eqs.~2.1! and~3.1!. Hence, Theorem 2
proves that in the synchronization interval, the synchroni
tion error e remains bounded, hence our scheme is rob
with respect to noise and parameter mismatch in this per
For simplicity, let us definee` as follows:

e`5
k3

12r
nm1

k4

12r
iDmi . ~3.9!

Note thate(k)→e` ask→`, hencee` gives an asymptotic
bound on the error. Moreover, this bound depends line
on noise level and parameter mismatch, hence it decrea
~increases! linearly as the noise level and/or parameter m
match decreases~increases!. From a practical point of view
if Ts is sufficiently large, we may expect that the err
reaches this bound at the end of each synchronization pe

Next, we will consider the robustness in the messa
transmission interval. Note that, in this case Eq.~2.4! takes
the following form (s50):

w~k11!5 f „w~k!,m8…, ~3.10!

Theorem 3: Consider the systems given by Eqs.~2.1! and
~3.10!. Assume thatf (u,•) is Lipschitz, i.e., the following
holds for somek5.0:

i f ~u,m1!2 f ~u,m2!i<k5im12m2i . ~3.11!

Let e` be the error bound given by Eq.~3.9! and assume tha
at the end of each synchronization interval we haveiei
<e`1e1 for some sufficiently smalle1 ~Note that, by Eq.
~3.8!, this is the case ifTs is sufficiently large!. Let e.0
satisfy the following:

k2„k1~e`1e1!1k4iDmi…,e. ~3.12!
-
st
d.

ly
es,
-

d.
e

Then there exists a maximum allowable message trans
sion intervalT>1 such that Eq.~2.21! is satisfied for any
Tm<T.

Proof: By using Eqs.~2.1! and ~3.10! we obtain

e~k11!5@ f „u~k!,m…2 f „w~k!,m…#

1@ f „w~k!,m…2 f „w~k!,m8…#. ~3.13!

By using Eqs.~2.5! and ~3.11! in Eq. ~3.13! we obtain the
following in each message transmission period:

ie~k11!i<k1ie~k!i1k4iDmi . ~3.14!

Since im̂(k)2m(k)i<k2ie(k)i , and sinceiei<e`1e1 at
the beginning of each message transmission period, by u
Eq. ~3.14! we obtain the desired result.

Note that in the ideal case, for any lengthTm.0, we can
use our scheme provided thatTs is sufficiently big, and the
main reason for this is that we can reduce the error to
level. But in the nonideal case, we cannot guarantee to
duce the error below a certain level (e`) that depends on the
noise level and parameter mismatch, hence as a result of
we have an upper bound forTm . If the message length is
bigger than this bound, we may divide the message in p
and send each part in one message transmission period

IV. SIMULATION RESULTS

First we choose the logistic equation for the master s
tem and use the synchronization scheme proposed in@9#.
Hence, the master and slave systems in our synchroniza
scheme are given as follows:

u~k11!5mu~k!„12u~k!…, y~k!5h„u~k!…5u~k!,
~4.1!

w~k11!5m8w~k!„12w~k!…1s~k!@m8„12y~k!

2n~k!2w~k!…2r#„y~k!1n~k!2w~k!…,

~4.2!

wheren(k) is the~random! noise, ands(k) is the switching
signal such thats(k)51 in the synchronization period an
s(k)50 in the message transmission period. Note thath(x)
5x in this case. Due to the noise term, we may havew(k
11).1 (,0), in which case we setw(k11)51 „w(k
11)50… to guarantee boundedness ofw. Let Ts and Tm
denote the synchronization and message transmission p
lengths. Letm(k) be the message to be transmitted. For si
plicity we will assume that 0<m<1. Switching signals(k)
can be given as

s~k!5H 1 when k „mod~Ts1Tm!…P@0,Ts!

0 when k „mod~Ts1Tm!…P@Ts ,Ts1Tm!.
~4.3!

The signal transmitted to the slave systemms can be given as
ms(k)5y(k) when s(k)51 and ms(k)50.5„y(k)1m(k)…
whens(k)50, or in short:

ms~k!5y~k!10.5„12s~k!…„m~k!2y~k!…. ~4.4!
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FIG. 1. Simulation results for
the logistic map: ideal case.~a!
Transmitted signalms , ~b! Trans-
mitted messagem, ~c! Recovered

messagem̂, ~d! lnue(k)u.
r d

lso
lso

.
u-
Note that we have 0<ms<1, which may result in bette
masking. In the message transmission period, we have

m̂~k!52ms~k!2h„w~k!…,

k „mod~Ts1Tm!…P@Ts ,Ts1Tm!. ~4.5!

Simple calculation shows that

ms~k!2m̂~k!5ce~k!,

k „mod~Ts1Tm!…P@Ts ,Ts1Tm!, ~4.6!
wherec51. We note that Eq.~4.5! redefines the recovere
messagem̂, which is first introduced in Eq.~2.19!. The ap-
parent difference between Eqs.~4.5! and~2.19! is due to the
form of the transmitted signalms given by Eq.~4.4!. Note
that in the message transmission phase we havems(k)
50.5„y(k)1m(k)… as explained above, and hence Eqs.~4.5!
and~2.19! will have the same form in these phases. We a
emphasize thatm̂ represents the recovered message. We a
note that in the Figs. 1–3, we used the symbolmr for the
recovered message instead ofm̂ for some technical reasons

We simulated this system for two cases. In the first sim
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FIG. 2. Simulation results for the logistic map: Nonideal case.~a! Transmitted signalms , ~b! Transmitted messagem, ~c! Error e(k), ~d!

Recovered messagem̂, ~e! lnue(k)u, ~f! Corrected messagemc .
1

n

ce
re
th
z

ea

n
rd

inc

n

rror

d

cted

n-
ith
a

lation we choose the ideal case withm5m854, r50.1, n
50, Ts55, Tm513. The messagem is chosen asm(k)
5usin(k)u for k „mod(Ts1Tm)…P@Ts ,Ts1Tm). The Lips-
chitz constants that appear in Eqs.~2.5!, ~2.20!, ~3.2!, ~3.3!,
and ~3.11! can easily be found ask15k354, k251, k45k5

50.25. The results of this simulation are shown in Fig.
Here, Fig. 1~a! and Fig. 1~b! showms andm, and apparently
the messagem is well-masked inms . Figure 1~c! shows the
recovered message and Fig. 1~d! shows the synchronizatio
error in logarithmic scale~i.e., lnue(k)u versusk). ~Note that
in this case the error becomes extremely small, which ne
sitates the use of logarithmic scale to show meaningful
sults.! As can be seen, although the error increases in
message transmission periods, overall it decreases to
exponentially.

In the second simulation we choose the nonid
case with m54, m853.99 (Dm50.01), r50.1, Ts510,
Tm55, and n is a random noise uniformly distributed i
@0,0.001#(nm50.001). As for the message we use the wo
‘‘EARTHQUAKE,’’ coded by using Baudot code~see@19#!.
Here, each letter is represented by a five-digit code. S
m(k)P$0,1%, the recovered messagem̂ can be corrected by
using simple comparison as follows:
.

s-
-
e

ero

l

e

mc~k!5H 1 if m̂~k!>0.55

0 if m̂~k!<0.45
. ~4.7!

This also increases the tolerable error level@i.e., e in Eqs.
~2.24! and ~3.12!#. The results of this simulation are show
in Fig. 2. Figures 2~a! and 2~b! showms andm, and as can be
seen the message is well-masked. The synchronization e
e is shown in Fig. 2~c! with normal scale and in 2~e! with
logarithmic scale (lnue(k)u vs k). The received and correcte
messages are shown in Figs. 2~d! and 2~f!, respectively. As
can be seen, after correction, the message is reconstru
without error.

The main reason for relatively smallTm ~or small ratio
Tm /Ts) in the above simulations is the large Lipschitz co
stantk1. To increase this ratio, we need chaotic systems w
smallerk1. An example of such a system may be given by
tent map as follows:

f ~u,m!5H mu when 0<u<0.5

m2mu when 0.5<u<1,
~4.8!



PRE 62 3549SYNCHRONIZATION AND CHAOTIC MASKING SCHEME . . .
FIG. 3. Simulation results for the tent map: Nonideal case.~a! Transmitted signalms , ~b! Transmitted messagem, ~c! Error e(k), ~d!

Recovered messagem̂, ~e! lnue(k)u, ~f! Corrected messagemc .
r

e
y

.

t

IS
e
es-

ked.

2
the

nd
roni-

the
tain
ere
rans-
and it can be shown that this system is chaotic form.1 ~see
@20#!. We also havek15m for this example. The maste
system is given as

u~k11!5 f „u~k!,m…. ~4.9!

Note that in this case we have 0<m2<u<m1<1. Hence,
we scaleu to obtain the measured signaly as follows:

y~k!5h„u~k!…5
u~k!2m2

m12m2
, ~4.10!

hence we have 0<y<1. For the synchronization, we use th
scheme proposed in@6,8#, hence the slave system is given b

w~k11!5 f @w~k!1s~k!d„z~k!1n~k!…,m8#,

z~k!5u~k!2w~k!, ~4.11!

wheres(k) is given by Eq.~4.3! andn(k) is a random noise
It can easily be shown that Eq.~2.3! is satisfied withr
5m(12d) ~see@5# for a similar computation for a skew-ten
map!. The transmitted messagems(k) and the recovered
messagem̂(k) are given by Eqs.~4.4! and~4.5!, respectively.
Note that Eq.~4.6! is satisfied in this case forc51/(m1

2m2).
We simulated this system withm51.4, m851.39 (Dm

50.01), r50.1 (d50.93), Ts510, Tm510, andn is a ran-
dom noise, uniformly distributed in@0,0.01# (nm50.01).
The messagem is chosen as the sentence ‘‘CHAOS
BEAUTIFUL,’’ again coded by using Baudot code. Sinc
m(k)P$0,1%, after message recovery, we can use the m
sage correction as given by Eq.~4.7!. The results of this
simulation are shown in Fig. 3. Figures 3~a! and 3~b! show
ms and m, and as can be seen the message is well-mas
The synchronization errore is shown in Fig. 2~c! with nor-
mal scale and in 2~e! with logarithmic scale (lnue(k)u vs. k).
The received and corrected messages are shown in Figs.~d!
and 2~f!, respectively. As can be seen, after correction,
message is reconstructed without error.

Comment 1: The usage of alternating synchronization a
message transmission phases and the fact that the synch
zation signal is only sent in the former phases while
message is only sent in the latter may be useful in cer
applications. If only a synchronization scheme is used, th
will not be any message to send, hence the message t
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mission phases may be used for some other purposes,
time multiplexing may be possible. For example, by ca
fully selecting the lengths of these intervals, it may be p
sible to synchronize e.g., two chaotic drive systems w
their corresponding response parts by using a single com
nication channel. In such a case, the synchronization sig
of the first and second chaotic drive systems will be sen
the corresponding response systems through the chann
the synchronization and message transmission phases
spectively. This approach may even be extended to sync
nize more than two chaotic drive systems by using a sin
channel. However, this point requires careful investigati
As for the chaotic masking scheme, both analog~e.g., non-
quantized! and digital messages may be used for mess
transmission; see the first and second simulations. Howe
the main application might be the transmission of digi
messages through analog communication channels, s
such signals are more error tolerant, see the second and
simulations. Also by using the idea of time multiplexing pr
sented above it may be possible to send different messag
different response systems by using a single channel. H
ever, this point also needs careful investigation.

Comment 2: One disadvantage of the proposed schem
the fact that the message is only sent in the message t
mission phases, which reduces the efficiency in using
channel. The quantityh5Tm /(Ts1Tm) may be used to de
termine the efficiency. Since the useful information~mes-
sage! is only sent in the message transmission phasesh
could also be used as an indicator of the carrying capacit
the proposed scheme~i.e., the rate of transmission of usef
information versus the total information!. Obviously h,1,
and ash increases, so does the carrying capacity and
efficiency in using the channel. Note thath is larger in the
ideal case, and it depends on some factors including the
erable error level, the noise level, and the parameter m
match in the nonideal case. In the first simulation presen
above, we haveh50.72 ~ideal case!, whereas in the secon
simulation we obtainedh50.33 ~nonideal case!, which
shows a sharp decrease in efficiency. In the third simula
we obtainedh50.5. By using the tent map given by Eq
~4.8! and the parameters given in the third simulation, exc
for Ts and Tm , we obtained efficiencies as large ash
50.75 in certain simulations. We note thath may be im-
proved by using different chaotic systems, however t
point also requires further investigation.
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V. CONCLUSION

In this paper, we consider a synchronization and a rela
message transmission scheme by using synchronized ch
systems. As in most synchronization schemes, we ass
that a master system generates a chaotic signal that is us
an input in the slave system for synchronization. We
sumed that a synchronization scheme for which the sync
nization is achieved exponentially fast is available. The
casional synchronization scheme proposed in this pa
consists of the application of synchronization and auto
mous phases periodically. In the synchronization phases
exponential synchronization scheme mentioned above
used and in the autonomous phases, the response syst
switched to an autonomous system that is a replica of
drive system. In the case of message transmission, the
sage is masked by the drive signal and sent to the rece
only in the autonomous phases. We showed that under
tain conditions, it is possible to achieve synchronization, a
in the case of message transmission, it is possible to rec
the message with acceptable error. We also proved tha
proposed scheme is robust with respect to noise and pa
eter mismatch under certain conditions. Note that this rob
ness result is quite general and is due to the expone
synchronization. Hence our results also imply that a
scheme that yields exponential synchronization is also rob
with respect to noise and parameter mismatch under s
conditions. We also presented some simulation resu
which indicate that the proposed scheme could be use
some applications. These simulations suggest that the t
nique is particularly suitable for transmission of digital si
nals. In this case, the tolerable error level is quite large~e.g.,
half the message magnitude! and this increases the maximu
allowable message length in the nonideal case. Moreover
using a simple comparison, the message can be recov
exactly.

We do not investigate the security of our scheme, and
not claim any level of security. But we note that our resu
are independent of message level, whereas in most of
chaotic masking schemes, the message level is required
sufficiently lower than that of the chaotic carrier. This poi
may be considered as an advantage of our scheme.

We also did not consider the synchronization of switchi
signals(k) between the master and slave systems. Since
signal is periodic, it can easily be generated in master
slave systems separately. Other schemes may be pos
but since researching such schemes is not our main aim
did not investigate this problem in detail.
, I
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