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Synchronization and chaotic masking scheme based on occasional coupling
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We present a synchronization and a related chaotic masking scheme for discrete-time systems. This method
is based on occasional coupling of transmitter and receiver systems. We show that the synchronization may be
achieved and the message can be recovered with acceptable error under certain conditions. Then we show that
the proposed schemes are robust with respect to noise and parameter mismatch. We also present some simu-
lation results.

PACS numbegps): 05.45-a, 43.72+q

[. INTRODUCTION sponse system is switched to a replica of the drive system. In
the case of message transmission, the message is masked by
In the last decade the synchronization of chaotic systemthe drive signal and sent to the receiver only in the autono-
has received a great deal of attention, gkel§. One pos- Mous phases. We will show that under certain conditions, it
sible application of synchronization is the possibility of us-is possible to achieve synchronization, and in the case of
ing chaotic signals for secure communicati@ee[4,5,7). Message transmission, it is possible to recover the message
There are various synchronization schemi@s11,15-18 with acceptable error. In particular, we will show that with
and in most of these the synchronized system consists of twilis technique, any message of any length can be transmitted
parts: a generator of chaotic signals, which is called the magdn the ideal case. Moreover, we will show that this technique
ter (or drive) system, and a receiver, which is called the slavelS robust with respect to noise and parameter mismatch.
(or responsesystem. A chaotic signal generated by the mas\When such nonidealities are present, we will show that there
ter system may be used as an input to the slave system t§ @ maximum allowable message length for successful mes-
synchronize the common signals of both systems. After synsage recovery, and if the length of the message exceeds this
chronization, one may add the message to the chaotic signkgngth, we can divide the message into submessages—each
used for synchronization and send this signal as an input t6f which having a length smaller than the maximum allow-
the slave system. This is called chaotic masking, and undeible length—and send each submessage in one message
certain conditions, one may recover the original messag&ansmission interval.
[2,3]. An extensive list of references for various aspects of This paper is organized as follows. In the next section, we
chaotic systems may be found in REf]. will introduce our synchronization scheme and the related
In this paper, we will consider the discrete-time chaoticmessage transmission scheme, and prove their basic proper-
Systems_ Synchronization of such SystemS, particu|ar|}f(ies in the ideal case. In Sec. I, we will give some robust-
coupled maps, has been investigated by many researchers.Nfss results with respect to noise and parameter mismatch. In
Refs.[6,8], Synchronization properties of Coup|ed maps, in-Sec. IV, we will present some simulation results, and finaIIy
cluding the coupled tent maps, were investigated. In Refwe will give some concluding remarks.
[12], coupled logistic maps were considered. An observer-
based synchronization scheme for discrete-time systems was Il. OCCASIONAL COUPLING
given in[23] (see[9,10] for continuous-time cageln Refs.
[6,21] various synchronization schemes and their robustness We consider discrete-time systems in this work. Let the
properties were given. In Rel22] some secure communica- chaotic master system be given as follows:
tion schemes based on synchronization were proposed.
Recently, a new synchronization scheme based on occat(k+1)=f(u(k),ux), y(k)=h(u(k)), k=012...,
sional coupling and its application to communication for 2.9
continuous-time systems has been given in Rdf3,14]. In
this paper, we will apply the same idea to discrete-time syswhereue R" is the statew e R is parameter vectorf,:R"
tems and show that similar results hold under certain condiX R°—R" and h:R"—R® are functions, ang/e R* is the
tions. We will assume that a synchronization scheme fomeasurable output of this system that will be used for syn-
which the synchronization is achieved exponentially fast ischronization. Let the slave system used for synchronization
available. The occasional synchronization scheme proposdtf given as
in this paper consists of the application of synchronization
and autonomous phases periodically. In the the synchroniza- w(k+1)=g(w(k),y(k),n), k=0,12..., (2.2
tion phases, the exponential synchronization scheme men-
tioned above is used and in the autonomous phases, the nehere g:R"xXRIXRP—R" is an appropriate function. Let
e=u—w denote the synchronization error. We assume that
the error decays exponentially to zero, that is for sdvhe
*Email address: morgul@ee.bilkent.edu.tr >0, 0<p<1, the following holds for ank>ky ande(ko):
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[e(k)||<M pk—*d|le(ky)|, (2.3 ning of synchronization periogdand the error in the message
recovery will be small[see Eq.(2.19]. This is the basic
rationale in our scheme.

where|-|| is any norm inR". In case Eq(2.1) is valid for Theorem 1 Consider the system given by Ed8.1) and
ko<sk<K-—1, then we require that Eq2.3) be valid for (2.4), and the synchronization scheme given above. Assume

ko<k<K. In this case we say that the synchronization isthat the functionf(-,x) is Lipschitz, i.e., the following
exponential. Note that we may také=1 in Eq.(2.3), with-  holds:

out loss of generality. In some cases E33) might hold for

sufficiently smalle(ky), i.e., for|e(ky)||<r for somer>0, [f(u,m)—fF(w, )| <kqlu—wl, (2.5
in which case we say that the synchronization is locally ex- )
ponential. for somek,;>0. Assume that Eq2.3) holds in the synchro-

We note that some synchronization schemes proposed ffization phases. Ts>0 andT,>0 are chosen as
the literature are exponential. For example, in Réi, an
exponential synchronization scheme for logistic maps is pro-
posed, and it was shown that this scheme is robust with
respect to noise and parameter mismatch5ln a different ) )
synchronization schem@ype 2 in the notation of Ref5)) then the errofie(k)| decays to zero. Moreove[, this decay is
was applied to a skew-tent map, and similar results wer@xponential, i.e., the following holds for sonM>0, 0<vy
obtained. In Refs[10,11], an observer-based synchroniza- <1:
tion scheme for continuous-time systems was proposed and .
it was shown that the proposed scheme yields exponential le(k)|l<M¥¥le(0)]. 2.7
synchronization that is robust with respect to noise and pa- ) )
rameter mismatch. The same methodology could be ex- Proof Letus define the following:
tended to discrete-time systems, see ¢28). However, we s m_ s .
will not pursue this direction. v T=U=-D(Ts+Tw), Ty=Tj+Ts, [=1.2,..

In Refs.[12,13], a communication scheme for continuous-
time systems based on occasional coupling of synchronizegd,
systems was proposed. We will apply this methodology tq;,
discrete-time systems. Let us rewrite E2.2) in the follow-
ing form:

InM Tslnp+InM

- |np 1 m |n k]_ 1 (26)

T>

(29

,T; andT]" denote the beginning of thigh synchroniza-

n and autonomous phases, respectively. Since(Eg)
holds in the jth synchronization phase, we have the
following:

w(k+1)=fw(k),x)+s(k)GW(K),y(K),x), (2.4 ledo=Mpt De(Td)], Ti<k=T". (2.9

At the jth autonomous phase we have
where G(w,y, ) =g(w,y,u) —f(w,u), and s(k)=0,1 is

the switching signal. Whes(k) =1, Eq.(2.4) reduces to Eq. letk+1)[[=[[f(u(k), ) = f(w(k), wll<kille(k)],
(2.2), and whens(k)=0, Eq. (2.4 becomes a copy of Eq.
(2.1). As in[12,13, our chaotic masking scheme is based on T'<k<Tj,1, (2.10

changing the switching signal between 0 and 1, periodi-
cally. The periods in whicls=1 ands=0 are used for syn- hence we have
chronization and message transmission, respectively. More

precisely, lefTg andT,, be the integers that denote the syn- ||e(k)||<k(lk_Ti )||e(T}“)||, T'<ksT;,;. (213
chronization and message transmission intervals, respec-

tively. Then, forj=1,2,... oursynchronization scheme is Note that if k;<1, then the exponential decay is obvious
as follows: from Egs.(2.9) and(2.11). Hence we assumle;>1 in the

i. (jth synchronization phageFor (j—1)(Ts+T)<k  sequel. From Eq(2.9) we obtain
<jTg+(j—21)T, [i.e., whenk (mod(T¢+T,,))e[0,Tg)],

use the master system given by E.1) and the slave sys- le(TMII<MpTsle(T)Il. (212
tem given by Eq(2.4) with s(k)=1. The signal trasmitted to )
the slave system ig in this period. Hence we can rewrite Eq2.11) as

ii. (jth autonomous phag&or jT+(j—1)T,<k<j(Ts m
+T,), [i.e., wherk (mod(Ts+T,)) € [Te, Te+ Tr) ], use the le(oll=Mp™sk Ve, TI<k=TS,,.
master system given by ER.1) and the slave system given (2.13

by Eq.(2.4) with s(k)=0. (Note that in this phase E¢2.4)
becomes a replica of Eq2.1), which is an autonomous sys- Note thatT;=0, hence from Eq(2.13 we obtain
tem). )
Note that in the synchronization phase, the error decays [e(T5, DlI< alle(T)[<a[e(0)], (2.14
exponentially to zero, as given by E®.3), and in the au- . ]
tonomous phase it may increase, also exponentially fastvherea>0 is defined as
However, by arrangings andT,,, it may still be possible to T T
obtain an error that decreases exponentially diaigihe begin- a=Mp k™. (215
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By using Eq.(2.6) we obtain If In elrk,<0, then EQ.(2.23 is satisfied provided that the
following holds:
Ina=INnM+TgInp+T,Ink;<O0, (2.19
€
hencea<1. Note that sinceM=1 andp<1, we haveT, INM+Tdnp+TyIn kﬁlnm. (2.29
2

>0 in Eqg. (2.6), and the first inequality in E¢2.6) is re-

quired to guarante®,>0. By using Eq(2.14in Eqs.(2.9)  f |n ¢/rk,=0, then Eq.(2.23 is satisfied provided that the
and(2.13 we obtain following holds:

M

Note that 0<p<1, hence Ip<0. ThereforelT¢In p——o as
le(k)|<al|e(0)]], ij<k$-|-js+1_ (2.18  Ts—. Hence, for anyT,>0, one can find &¢>0 such
that Eq.(2.24) or (2.25 holds.
By using Eq.(2.8) we obtainj=(k+T.)/(Ts+T,,) in Eq.

(2.17 and j=k/(T¢+T,,) in Eq. (2.18. By using these in- IIl. ROBUSTNESS RESULTS
equalities, respectively, in Eq$2.17) and (2.18, and by ) ) ) )
using the fact thate<1, we obtain Eq.(2.7) with y In the previous section, we considered the ideal case. In

— T+ T 21 andfl = max(My"a, 1. th_is section, we wi_II show that the propo_sed scheme is robust
Based on tr,1e svnchronization sc,:heme iven above WWI'[h respect to noise and parameter mismatch. Note that the
Y me g ’ .Sevelopment of synchronization and message transmission
propose the following message transmission scheme. Againi - ; : i
leti=12 and letn be the messaae to be transmitted sthemes are similar, hence we will consider only the robust
Thén oyu; .rﬁéésa e transmission schegr]ne is as follows: "ness of the message transmission scheme in this section. Ro-
0 ,('th S nchrgnization hasesame as théth s nchrd— bustness of the synchronization scheme can easily be shown
nizatio# hgse in the s ncr?ronization schemee y by performing similar calculations. We note that similar re-
(i) 'tﬁ m o 3:1 mission phasam .th'th _ sults were given in Ref$10-13 for the observer-based syn-
tonomgus ﬁ;;:?ﬁ thaei nf:f]r%nigatizﬁ sechajmj Thaeusi na’*uronization schemes for continuous-time systems, and it
P Y : 9"Pas noted that these robustness results are consequences of

sent to the receiver is the masked messpgem in this exponential synchronization. We expect that similar results

pha__s_e. in ith ¢ .. should hold for the discrete-time systems, and in this section
(iii) (message recove)ryrj .J .message ransmission \ve will prove such a robustness result by using exponential
phase, the recovered messagés given as synchronization.
- We will assume that the slave systd212) has the fol-
m(k) = y(k) +m(k) —h(w(k)). (219 jowing form:
We have the following result for our scheme. w(k+1)=g(y(k)+n(k),w(k),u’), (3.0

Theorem 2: Consider the systems given by Egsl) and
(2.4), and the message transmission scheme given aboveheren is a(randon) noise term added to the observatipn
Assume that Eq(2.3) holds in the synchronization phases and u’ is the parameter vector used in the slave system. In
and Eq.(2.5 holds. Moreover, leh be Lipschitz, i.e., the the following we will show that the proposed scheme is ro-

following holds for somek,>0: bust under some mild conditions provided tivd& 1 in Eq.
(2.3, hence robustness is a consequence of exponential syn-
Ih(u) —h(w)||<ka[u—w]. (220 chronization. This result can be extended to khe-1 case,

but the proof involves some advanced Lyapunov stability
results and will not be pursued here.

Theorem 2Let the system given by Eq$2.1) and (2.2
satisfy Eq.(2.3) with M<1. Assume thag(y,w,u) is Lip-
schitz iny and u, i.e., the following hold for somé;>0,
k,>0:

Let||e(0)||<r for somer >0 and lete>0 be given. Then for
any messagen of lengthT,,, there exists a synchronization
interval T4 such that the following holds in the message
transmission period:

[m(k)—m(k)||<e. (2.21)
. . W, 1) — W, <k =Y, 3.2
Proof. It can easily be shown that the estimat@s9)— lotys.w.p) = ayz.w. I <ksllyr =yl 3.2
(2.23 are valid. By using Eq92.19), (2.20, and(2.18 we
obtain the following in thgth message transmission phase:
. , Now consider the system given by E¢&.1) and(3.1) and
Im(k) —m(k)[|<kza[le(0)], (222 assume thaln||<n,, for somen,,>0 and defineA u =’
— w. Assume that the solutions of Eq&.1) and(3.1) remain
bounded. Then there exist constants>0, ¢,>0, andcg
such that the following estimate holds:

oy, w, 1) =9y, W, mo)||[<Kgll t1— p2]- (3.3

wherew is given by Eq(2.15. From Eq.(2.22 we see that
Eqg. (2.21) holds if the following is satisfied:

M+ T,In p+ T Inky < = In%, i=12,.... le(k)|<canm+call Al +cap™ 3.4
jior
(2.23 Proof. Note that Eq.(3.1) can be rewritten as
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w(k+1)=g(y(k),w(k),u)+[g(y(k)+n(k),w(k),u")
= g(y(k),w(k), )]+ [g(y(k),w(k),u")
—g(y(k),w(k), n)].
Hence the erroe now satisfies
e(k+1)=f(u(k),u)—g(y(k),w(k),u)
—[9(y(k) +n(k),w(k),u")=g(y(k),w(k),u")]
—[g(y(k),w(k),u")—g(y(k),w(k),u)]. (3.6

By using Egs.(2.1)—(2.3) and EQ@s.(3.2) and (3.3 in Eq.
(3.6), we obtain

(3.9

letk+1)[[< pllek)[|+kinm+ Kol A |- (3.7)
By using Eq.(3.7) repeatedly, we obtain
<=2 K a
= .
etk < =5 nt 75 1Al
kinm+ Kol Au
| e - ——"—=—=|r", @8

(1-p)p?

which has the same form as Eg.4).

Note that whers(k)=1, i.e., in the synchronization inter-
val, our scheme uses Ed&.1) and(3.1). Hence, Theorem 2
proves that in the synchronization interval, the synchroniza-
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Then there exists a maximum allowable message transmis-
sion intervalT=1 such that Eq(2.2]) is satisfied for any
Th=<T.

Proof. By using Egs.(2.1) and(3.10 we obtain

e(k+1)=[f(uck),u)—f(w(k),u)]
+Fw(k),w)—f(w(k),u)].  (3.13

By using Egs.(2.5 and(3.11) in Eqg. (3.13 we obtain the
following in each message transmission period:
le(k+D)lI<kqlle(k)ll+kaf|Aull. (3.14

Since |m(k) —m(k)||<k,|e(k)|, and since|e|<e.+ ¢, at
the beginning of each message transmission period, by using
Eq. (3.14) we obtain the desired result.

Note that in the ideal case, for any lengih>0, we can
use our scheme provided thag is sufficiently big, and the
main reason for this is that we can reduce the error to any
level. But in the nonideal case, we cannot guarantee to re-
duce the error below a certain level,() that depends on the
noise level and parameter mismatch, hence as a result of that
we have an upper bound fdr,,. If the message length is
bigger than this bound, we may divide the message in parts
and send each part in one message transmission period.

IV. SIMULATION RESULTS

First we choose the logistic equation for the master sys-

tion error e remains bounded, hence our scheme is robuslem and use the synchronization scheme propose@]in
with respect to noise and parameter mismatch in this period4ence, the master and slave systems in our synchronization

For simplicity, let us define,, as follows:

Ks K,
— Nyt —— .
e LY

= (3.9

€,=

Note thate(k) —e, ask—o, hencee,, gives an asymptotic

scheme are given as follows:

u(k+1)=pu(k)(1—u(k)), y(k)=h(uck))=u(k),

4.1

w(k+1)=p'w(k)(1—=w(k))+s(k)[x'(1=y(k)

bound on the error. Moreover, this bound depends linearly

on noise level and parameter mismatch, hence it decreases,
(increaseklinearly as the noise level and/or parameter mis-
match decreasgicreases From a practical point of view,

—n(k)—w(k))—p](y(k)+n(k)—w(k)),
(4.2)

if Ts is sufficiently large, we may expect that the errorwheren(k) is the(random noise, ands(k) is the switching
reaches this bo_und at t.he end of each synch.ronlzatlon periodignal such thas(k)=1 in the synchronization period and
Next, we will consider the robustness in the messagg(k)=0 in the message transmission period. Note H{a)

transmission interval. Note that, in this case Ej4) takes
the following form (s=0):
w(k+1)=f(w(k),u'), (3.10
Theorem 3Consider the systems given by E¢8.1) and
(3.10. Assume thatf(u,-) is Lipschitz, i.e., the following
holds for somekg>0:

(U pe0) = F(u, polll<Kellps—peof . (31D

Lete,, be the error bound given by E.9 and assume that

at the end of each synchronization interval we hgeg

<e,+¢; for some sufficiently smalk; (Note that, by Eq.
(3.8), this is the case ifT is sufficiently large. Let e>0

satisfy the following:

ko(ky(€,t €1) HKyllApl)<e. (3.12

=X in this case. Due to the noise term, we may hax&
+1)>1 (<0), in which case we sewv(k+1)=1 (w(k
+1)=0) to guarantee boundedness wf Let Tg and T,
denote the synchronization and message transmission period
lengths. Leim(k) be the message to be transmitted. For sim-
plicity we will assume that &m=1. Switching signab(k)

can be given as

1 whenk (modTs+T,))e[0Ty)

0 whenk (ModTs+Ty))e[Ts,Tet+Th)-
(4.3

s(k)=

The signal transmitted to the slave systeqican be given as
ms(k)=y(k) when s(k)=1 and mg(k)=0.5(y(k) +m(k))
whens(k)=0, or in short:

ms(k) =y (k) +0.5(1—s(k))(m(k) —y(k)). (4.4
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Note that we have €m,=<1, which may result in better wherec=1. We note that Eq(4.5) redefines the recovered

masking. In the message transmission period, we have  messagen, which is first introduced in Eq2.19. The ap-
- parent difference between Edd.5 and(2.19 is due to the

m(k) =2mg(k) —h(w(k)), form of the transmitted signahg given by Eq.(4.4). Note

that in the message transmission phase we haygk)

k (ModTs+Tm)e[Ts, Tst Tr).- (49 =0.5y(k)+m(k)) as explained above, and hence HdsS)
and(2.19 will have the same form in these phases. We also
emphasize than represents the recovered message. We also

my(k) —m(k) = ce(k), note that in the Figs. 1-3, we used the symbplfor the
recovered message insteadnoffor some technical reasons.
k (modTg+T,))el[Ts, Ts+Th), (4.9 We simulated this system for two cases. In the first simu-

Simple calculation shows that
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FIG. 2. Simulation results for the logistic map: Nonideal cdgeTransmitted signain, (b) Transmitted messags, (c) Error e(k), (d)
Recovered message, () In|e(k)|, (f) Corrected message, .

lation we choose the ideal case with=u'=4, p=0.1,n 1 if m(k)=0.55
=0, T¢=5, T,=13. The messagen is chosen asn(k) m.(k)= . . 4.7
=|sin)| for k (mod(Ts+Tp))e[Ts,Ts+Tpm). The Lips- 0 if m(k)<0.45

chitz constants that appear in E¢2.5), (2.20), (3.2, (3.3),
and(3.11) can easily be found ds;=k;=4, k,=1, k;=k5
=0.25. The results of this simulation are shown in Fig. 1.This also increases the tolerable error lefied., € in Egs.
Here, Fig. 1a) and Fig. 1b) showm, andm, and apparently (2.24 and(3.12)]. The results of this simulation are shown
the messagen is well-masked irmg. Figure 1c) shows the in Fig. 2. Figures ) and 2b) showms andm, and as can be
recovered message and FigdlLshows the synchronization S€en the message is well-masked. The synchronization error
error in logarithmic scaléi.e., In|e(K)| versusk). (Note that € iS shown in Fig. 2) with normal scale and in(®) with
in this case the error becomes extremely small, which necedogarithmic scale (Ife(k)| vs k). The received and corrected
sitates the use of logarithmic scale to show meaningful remessages are shown in Fig¢dRand 2f), respectively. As
sults) As can be seen, although the error increases in thé&n be seen, after correction, the message is reconstructed
message transmission periods, overall it decreases to zeYdthout error.
exponentially. The main reason for relatively small,, (or small ratio

In the second simulation we choose the nonideal’m/Ts) in the above simulations is the large Lipschitz con-
case withu=4, u’'=3.99 (Ax=0.01), p=0.1, T=10, stantk;. To increase this ratio, we need chaotic systems with
T,,=5, andn is a random noise uniformly distributed in Smallerk;. An example of such a system may be given by a
[0,0.00%(n,,=0.001). As for the message we use the wordtent map as follows:
“EARTHQUAKE,” coded by using Baudot codésee[19]).
Here, each letter is represented by a five-digit code. Since
m(k) €{0,1, the recovered message can be corrected by pu when 0<u<0.5

: . . f = 4,
using simple comparison as follows: () m—pu  when 0.55u<1, 4.8
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FIG. 3. Simulation results for the tent map: Nonideal cdaeTransmitted signaing, (b) Transmitted message, (c) Error e(k), (d)

Recovered message, () In|e(k)|, (f) Corrected message, .

and it can be shown that this system is chaotic/for1 (see

[20]). We also havek;=u for this example. The master

system is given as
u(k+1)="f(u(k),um). (4.9

Note that in this case we havesim,<u=<m;=<1. Hence,
we scaleu to obtain the measured signahs follows:

_u(k)—my

Y(k):h(u(k))—m,

(4.10

hence we have€@y=1. For the synchronization, we use the 11,4 synchronization errag is shown in Fig. 2c)

messagen(k) are given by Eqs4.4) and(4.5), respectively.
Note that Eq.(4.6) is satisfied in this case foc=1/(m;
-m,).

We simulated this system with=1.4, ©'=1.39 Au
=0.01), p=0.1 (6=0.93), T,=10, T,,= 10, andn is a ran-
dom noise, uniformly distributed i1 0,0.0 (n,,=0.01).
The messagen is chosen as the sentence “CHAOS IS
BEAUTIFUL,” again coded by using Baudot code. Since
m(k) €{0,1}, after message recovery, we can use the mes-
sage correction as given by E.7). The results of this
simulation are shown in Fig. 3. FiguresaBand 3b) show
mg andm, and as can be seen the message is well-masked.
with nor-

scheme proposed [16,8], hence the slave system is given by mal scale and in @) with logarithmic scale (lfe(k)| vs. k).

w(k+1)=f[w(k)+s(k)s(z(k) +n(k)),u'],
z(k)=u(k) —w(k), (4.11)

wheres(k) is given by Eq(4.3) andn(k) is a random noise.
It can easily be shown that E@2.3) is satisfied withp

The received and corrected messages are shown in kds. 2
and Zf), respectively. As can be seen, after correction, the
message is reconstructed without error.

Comment 1The usage of alternating synchronization and
message transmission phases and the fact that the synchroni-
zation signal is only sent in the former phases while the
message is only sent in the latter may be useful in certain

= u(1-6) (see[5] for a similar computation for a skew-tent applications. If only a synchronization scheme is used, there

map. The transmitted messages(k) and the recovered

will not be any message to send, hence the message trans-
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mission phases may be used for some other purposes, e.g., V. CONCLUSION
time multiplexing may be possible. For example, by care-

I lecti he | h h . s i b In this paper, we consider a synchronization and a related
fully selecting the lengths of these intervals, it may be poSiegsage transmission scheme by using synchronized chaotic

sible to synchronize e.g., two chaotic drive systems Withsystems. As in most synchronization schemes, we assume
their corresponding response parts by using a single commuhat a master system generates a chaotic signal that is used as
nication channel. In such a case, the synchronization signakn input in the slave system for synchronization. We as-
of the first and second chaotic drive systems will be sent teumed that a synchronization scheme for which the synchro-
the corresponding response systems through the channel iization is achieved exponentially fast is available. The oc-
the synchronization and message transmission phases, @asional synchronization scheme proposed in this paper
spectively. This approach may even be extended to synchr&onsists of the application of synchronization and autono-

nize more than two chaotic drive systems by using a singl&CUS phases periodically. In the synchronization phases, the

channel. However, this point requires careful investigation.emonem""lI synchronization scheme mentioned above is

As for the chaotic masking scheme, both analeg.. non- used and in the autonomous phases, the response system is

. 4 digital b d 1 switched to an autonomous system that is a replica of the
quantized and digital messages may be used for messaggyiye system. In the case of message transmission, the mes-

transmi;sion; see .the fir_st and second simullatiions. Hoyvgvegage is masked by the drive signal and sent to the receiver
the main application might be the transmission of digitalgnly in the autonomous phases. We showed that under cer-
messages through analog communication channels, singgin conditions, it is possible to achieve synchronization, and
such signals are more error tolerant, see the second and thifiglthe case of message transmission, it is possible to recover
simulations. Also by using the idea of time multiplexing pre- the message with acceptable error. We also proved that the
sented above it may be possible to send different messagespgfoposed scheme is robust with respect to noise and param-
different response systems by using a single channel. Howeter mismatch under certain conditions. Note that this robust-
ever, this point also needs careful investigation. ness result is quite general and is due to the exponential
Comment 20ne disadvantage of the proposed scheme isynchronization. Hence our results also imply that any
the fact that the message is only sent in the message trargsheme that yields exponential synchronization is also robust
mission phases, which reduces the efficiency in using th&ith respect to noise and parameter mismatch under some
channel. The quantityy=T,,/(T<+ T, may be used to de- conditions. We also presented some simulation results,
termine the efficiency. Since the useful informatiomes- ~ Which indicate that the proposed scheme could be used in
sagé is only sent in the message transmission phages, SOMe gpphcgtlons. Thgse simulations §uggest that_the Fech-
could also be used as an indicator of the carrying capacity dfidue i particularly suitable for transmission of digital sig-

the proposed schemniee., the rate of transmission of useful nals. In this case, the tqlerable error level is quite Ia(Egg.,
information versus the total informatipnObviously 7<1, half the message magnitydend this increases the maximum

and asy increases, so does the carrying capacity and thgllowable message length in the nonideal case. Moreover, by

. . . ; y using a simple comparison, the message can be recovered
efficiency in using the channel. Note thatis larger in the 9 P P 9

ideal d it depend factors including the tof 2CUY-
Ideal case, and It depends on Some factors Including the 10l- yya "4 not investigate the security of our scheme, and do
erable error level, the noise level,

_ _ and the parameter Misyo; ojaim any level of security. But we note that our results
match in the nonideal case. In the first simulation presented, independent of message level, whereas in most of the
above, we have;=0.72(ideal casg whereas in the second chaotic masking schemes, the message level is required to be
simulation we obtainedn=0.33 (nonideal casg which  syfficiently lower than that of the chaotic carrier. This point
shows a sharp decrease in efficiency. In the third simulatiomay be considered as an advantage of our scheme.

we obtainedn=0.5. By using the tent map given by Eq. We also did not consider the synchronization of switching
(4.9 and the parameters given in the third simulation, excepsignals(k) between the master and slave systems. Since this
for Ts and T,,, we obtained efficiencies as large as signal is periodic, it can easily be generated in master and
=0.75 in certain simulations. We note thatmay be im-  slave systems separately. Other schemes may be possible,
proved by using different chaotic systems, however thisut since researching such schemes is not our main aim, we
point also requires further investigation. did not investigate this problem in detail.
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